

Sample Paper-01 Mathematics Class – XI

Time allowed: 3 hours General Instructions:

M. M: 100

- (i) All questions are compulsory.(ii) This question paper contains 29 question
- (ii) This question paper contains 29 questions.
- (iii) Question 1- 4 in Section A are very short-answer type questions carrying 1 mark each.
- (iv) Question 5-12 in Section B are short-answer type questions carrying 2 marks each.
- (v) Question 13-23 in Section C are long-answer-I type questions carrying 4 marks each.
- (vi) Question 24-29 in Section D are long-answer-II type questions carrying 6 marks each.

Section – A

- **1.** Compute $(1+2i)i \frac{3+2i}{1-i}$
- **2.** Write the domain and range of the function $\cos^{-1} x$
- **3.** Find the sign of y if $y = \sin(\cos^{-1} x)$
- **4.** Find $\sin^{-1}\left(\sin\left(\frac{6\pi}{7}\right)\right)$

Section B

- **5.** Write the coordinates of the point of intersections of the parabola represented by $y^2 = 4ax$ and its latus rectum
- 6. Find x and y if (x+7,8) = (10, x+y)
- 7. Find the inverse of the function $f(x) = x^2 x + 1, x > \frac{1}{2}$
- **8.** Find the vertex, axis, Focus, Directrix and latus rectum of the parabola $8y^2 + 24x 40y + 134 = 0$
- **9.** Express $\frac{7-4i}{3+2i}$ in the form a+ib
- **10.** Solve the inequality (x-2)((x-3) > 0
- **11.** Find the general value of x if $\tan 5x = \frac{1}{\tan 2x}$
- **12.** In a single throw of 2 dies what is the probability of getting a prime number on each die.

Section C

13. If
$$f(x) = x^3 - x$$
; $\phi(x) = \sin 2x$ Find the value $f[\phi(\frac{\pi}{12})]$

14. If $\tan A = \frac{m}{m+1}$ and $\tan B = \frac{1}{2m+1}$ prove that $\tan A + \tan B + \tan A \tan B = 1$

15. If
$$f: R \to R$$
 is defined as follows: $f(x) = \begin{cases} 1 & \text{if } x \in Q \\ -1 & \text{if } x \notin Q \end{cases}$ Find $f(\sqrt{3}, f(3), f(\sqrt{3+1}))$

16. Prove that the equation

 $sin\theta = x + \frac{1}{x}$ is impossible if x is real

17. Find the domain of the function for which $f(x) = \phi(x);$, *if* $f(x) = 3x^2 + 1$, *and* $\phi(x) = 7x - 1$ **18.** Find the limit $\lim_{x\to 0} \frac{1-\cos x}{x}$ **19.** Solve $2\sin^2 x + 14\sin x \cos x + 50\cos^2 x = 26$ **20.** Find $\frac{dy}{dx}$ given that $y = (\sin^n x \cos nx)$ **21.** If (5a), (a-b), b are in GP prove that $\log\left(\frac{1}{3}(a+b)\right) = \frac{1}{2}(\log a + \log b)$ **22.** If the nth term of a series is denoted by $\frac{7^{n-1}}{10^n}$. Find the sum to infinity of the series. **23.** Calculate the variance and standard deviation of the following data 8,12,13,15,22,14

Section D

24. $f(x) = (1+x)^{\frac{1}{x}}, x \neq 0$. Find $f(1+\frac{a}{y})^{by}$ **25.** The probability of A hitting a target is $\frac{4}{5}$; the probability of B hitting the target is $\frac{3}{4}$ and the probability of C missing the target is $\frac{1}{3}$. What is the probability of the target being hit at least twice.

26. Find the term independent of x in the expansion $\left(ax^2 - \frac{b}{x}\right)^9$